

Research in Judgment and Decision Making: Methodological Challenges and Theoretical Developments

Andreas Glöckner

Chair of Cognitive Psychology: Judgment, Decision Making, Action
University of Hagen
Max Planck Institute for Research on Collective Goods, Bonn

My first SPUDM: Stockholm 2005

PhD student, publication record ≈ 0

Robin Hogarth

Eric Johnson

Nigel Harvey

John Maule

My first SPUDM: Stockholm 2005

- What did I believe in back than?
 - coherence-based models are right and can explain the world
 - fast-and-frugal heuristics are wrong
 - better not specify your own model too precisely, it could be falsified
 - my findings can be replicated
 - long hair is the thing ...
 - short hair is good too
- Learned anything? What do I believe in today?
 - further updates follow ...

Judgment and Decision Making Today

- flourishing interdisciplinary field
 - journals
 - JDM, Decision, JBDM, OBHDP, JRU, MS, PsyRev, JEcPs, TaR, JBEE...
 - conferences
 - workshops funded by EADM
- many young scholars
 - EADM summer schools
 - young scholar event
 - PhD workshops and networks
- societies
 - EADM, SJDM, IAREP

common aim: advance knowledge concerning J/DM

what do we have to consider?

(A) Methodological Challenges

- ① Reproducibility
- ② Theory Specification and Prediction
- ③ Consolidation of Empirical Findings
- (B) Theoretical Developments
 - **4** Coherence-Based Models

- (A) Methodological Challenges
 - ① Reproducibility
 - ② Theory Specification and Prediction
 - ③ Consolidation of Empirical Findings
- (B) Theoretical Developments
 - Coherence-Based Models

Methodological Developments

- process tracing methods (Schulte-Mecklenbeck / Kühberger / Ranyard)
 - attention / eye-tracking / pupil dilation (Ashby / Orquin / Krajbich / S. Fiedler)
- formal model estimation / comparison methods
 - (hierarchical) Bayesian methods (Scheibehenne / Wagenmakers / Pachur / Rieskamp / Newell)
 - multinomial models (Heck / Erdfelder / Hilbig)
 - order-constraint inferences (Regenwetter / Hilbig)
 - refined strategy classification methods (Bröder / Glöckner)
- EADM fosters these developments
 - SPUDM → direct exchange and networking
 - summer schools → competence in young scholars

What are the methodological challenges?

- Can we trust published results?
 - reproducibility project psychology (Open Science Collaboration, 2016, Sci)
 - replication of 100 studies from JPSP, PsySc, JEP:LMC with power > .80
 - 38% of findings replicated
 - economics: 49% / 66% (Chang & Li, 2015 [59]; Camerer et al., 2016, Sci [18])
 - substantial differences between fields
 - many lab reproducibility projects
 - ego depletion effect = Cl incl. zero (Hagger et al., 2016, PPS)
 - facial feedback effect = Cl incl. zero (Wagenmakers et al., 2016, PPS)
 - ... [don't forget to update your lecture slides]

- How reproducible are findings in J/DM?
 - Many Lab Study I: Klein et al. (2015, SoPs)

- How reproducible are findings in J/DM?
 - Hagen Cumulative Science Project (Jekel, Glöckner et al., in progress)
 - replication of 50 articles from Judgment and Decision Making by students
 - feasible studies 2015 to 2017
 - huge effort but we learned a lot
 - half-time report -

- 1. Lu, X., Xie, X., & Liu, L. (2015). Inverted U-shaped model: How frequent repetition affects perceived risk. JDM, 10, 219-224.
- 2. Sirota, M., & Juanchich, M. (2015). A direct and comprehensive test of two postulates of politeness theory applied to uncertainty communication. JDM, 10 (3), 232-240.
- 3. Deppe, K. D., Gonzalez, F. J., Neiman, J. L., Jacobs, C., Pahlke, J., Smith, K. B., & Hibbing, J. R. (2015), Reflective liberals and intuitive conservatives: A look at the Cognitive Reflection Test and ideology. JDM, 10(4), 314-331
- 4. Calvillo, D. P., & Burgeno, J. N., (2015), Cognitive reflection predicts the acceptance of unfair ultimatum game offers. JDM, 10, 332-341.
- 5. Weisberg, D. S., Taylor, J. C., & Hopkins, E. J. (2015). Deconstructing the seductive allure of neuroscience explanations. JDM, 10(5), 429-441.
- 6. Wiss, J., Andersson, D., Slovic, P., Västfjäll, D., & Tinghög, G. (2015). The influence of identifiability and singularity in moral decision making. JDM, 10(5), 492-502.
- 7. Heintz, C., Celse, J., Giardini, F., & Max, S. (2015). Facing expectations: Those that we prefer to fulfil and those that we disregard. JDM, 10 (5), 442-455.
- 8. Krijnen, J., Zeelenberg, M., & Breugelmans, S. (2015). Decision importance as a cue for deferral. JDM, 10(5), 407-415.
- 9. Hohle, S. M. & Teigen, K. H. (2015). Forecasting forecasts: The trend effect. Judgement and Decision Making, 10, 416-428.
- 10. Pennycook, G., Cheyne, J. A., Barr, N., Koehler, D. J., & Fugelsang, J. A. (2015). On the reception and detection of pseudo-profound bullshit. JDM, 10(6), 549-563
- 11. Davidai, S., & Gilovich, T. (2016). The tide that lifts all focal boats: Asymmetric predictions of ascent and descent in rankings. JDM, 11(1), 7-20.
- 12. McGraw, A. P., Davis, D. F., Scott, S. E., & Tetlock, P. E. (2016). The price of not putting a price on love. JDM, 11(1), 40-47.
- 13. Peetz, J., Simmons, M., Chen, J., & Buehler, R. (2016). Predictions on the go: Prevalence of spontaneous spending predictions. JDM, 11(1), 48-61.
- 14. Noori, M. (2016). Cognitive reflection as a predictor of susceptibility to behavioral anomalies. JDM, 11(1), 114-120.
- 15. Bahník, S., & Strack, F. (2016). Overlap of accessible information undermines the anchoring effect. JDM, 11(1), 92-98.
- 16. Wiese, J., Buehler, R., & Griffin, D. (2016). Backward planning: Effects of planning direction on predictions of task completion time. JDM, 11(2), 147-167.
- 17. Rubinstein, A., & Salant, Y. (2016). "Isn't everyone like me?": On the presence of self-similarity in strategic interactions. JDM, 11 (2), 168–173.
- 18. Eriksson, K., & Jansson, F. (2016). Procedural priming of a numerical cognitive illusion. JDM, 11(3), 205-212.
- 19. Basehore, Z. & Anderson, R. B. (2016). The Simple Life: New experimental tests of the recognition heuristic. JDM, 11(3), 301–309.
- 20. Buchanan, J., Summerville, A., Lehmann, J., & Reb, J. (2016). The Regret Elements Scale: Distinguishing the affective and cognitive components of regret. JDM, 11(3), 275–286.
- 21. Millar, C., Starmans, C., Fugelsang, J., & Friedman, O. (2016). It's personal: The effect of personal value on utilitarian moral judgments. JDM, 11(4), 324-331.
- 22. Lu, J., Liu, Z., & Fang, Z. (2016). Hedonic products for you, utilitarian products for me. JDM, 11(4), 332-341.
- 23. Hütter, M., & Ache, F. (2016). Seeking advice: A sampling approach to advice taking. JDM, 11(4), 401-415.
- 24. Landy, J. F. (2016). Representations of moral violations: Category members and associated features. JDM, 11(5), 496-508.
- 25. Mata, A. (2016). Proportion dominance in valuing lives: The role of deliberative thinking. JDM, 11(5), 441-448.
- 26. Newall, P. W. S. (2016). Downside financial risk is misunderstood. JDM, 11(5), 416–423.
- 27. Schneider, S., Kauffman, S., & Ranieri, A. (2016). The effects of surrounding positive and negative experiences on risk taking. JDM, 11(5), 424-440.
- 28. Wang, X., Geng, L., Qin, J., Yao, S. (2016). The potential relationship between spicy taste and risk seeking. JDM, 11(6), 547–553.

- How reproducible are findings in J/DM?
 - Hagen Cumulative Science Project (Jekel, Glöckner et al., in progress)
 - replication of 50 articles from Judgment and Decision Making by students
 - feasible studies 2015 to 2017
 - currently finished: 26 replication studies

- How reproducible are findings in J/DM?
 - Hagen Cumulative Science Project (Jekel, Glöckner et al., in progress)
 - replication of 50 articles from Judgment and Decision Making by students
 - feasible studies 2015 to 2017
 - currently finished: 26 replication studies
 - N = 5,373 (MD = 163)
 - preliminary replication rate: 16 from 26 (62%)
 - open data enforced by editor
 - large sample sizes [original studies: N = 5,615]
 - already better in J/DM than in other fields
 - but should be further improved

- measures to increase reproducibility for J/DM
 - increased application of Open Science principles
 - pre-registration
 - a priori power-analysis
 - sharing data and materials
 - open and transparent reporting
 - teaching Open Science to students
 - changing incentives and policies
 - hiring, editing and reviewing
 - badges
 - open data policy for all journals in our field
- aim for my presidency #1: foster Open Science

flyer @ bit.ly/OpenScienceJDM

Challenge II: Theory Specification and Prediction

- reproducibility projects reveal shortcomings in theory specification
 - this is not a valid replication since
 - this finding might only hold for our
 - country / tasks / methods / "good" PhDs / senior researchers
 - not specified in theory section!
- scientific theory (Popper, 1934)
 - set of general implications of the form: $(x)(\varphi(x) \to f(x))$
 - all values x that satisfy the statement function $\varphi(x)$ [person, situation] also satisfy the statement function f(x) [judgment, choice, behavior]
 - experiments are conducted to test (against) theories
 - replication valid as long as antecedence $\varphi(x)$ fulfilled
 - usually no restrictions

Challenge II: Theory Specification and Prediction

- How good are theories in J/DM? (Glöckner & Betsch, 2011, JDM)
 - many formalized theories in J/DM → allow prediction (Erev / Ert)
 - empirical content of a theory = how much it forbids → predictions
 - generality and precision
 - challenges for empirical content
 - lack of construct specification / operationalization
 - as-if theories: lack predictions for process measures
 - theories with free parameters: flexibility of parameter problem (overfitting?)
 - theories with various strategies: strategy selection problem (underspecified?)

Model-Comparison: Predicting Risky Choice

(Glöckner & Pachur, 2012, Cognition)

risky choice

(N = 66; T1 - T2 with 1 week interval; 2 x 138 decisions; incentiviced; choice reliability = 79%)

Gamble 1

A 50% 10€

B 50% -5€

Gamble 2

A 65% -4€

B 35% 18€

Cumulative Prospect Theory (CPT)

$$v(x) = x^{\alpha}$$
 if $x \ge 0$

$$v(x) = -\lambda (-x)^{\beta} \text{ if } x < 0$$

$$w^{\dagger}(p) = \frac{p^{\gamma}}{(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma}} \text{ if } x \ge 0$$

$$\overline{w}(p) = \frac{p^{\delta}}{(p^{\delta} + (1-p)^{\delta})^{1/\delta}} \text{if } x < 0$$

theory underspecification larger problem than overfitting!

need for better process theories from post-hoc explanations to a-priori prediction

% L							
,,	CPTgw(7, g2)	CPT (3,pc)	CPT (TK)	EU (2,g2)	EV	PH	MINI

Challenge II: Theory Specification and Prediction

- culture of theory specification and revision
 - theory specification
 - operational definition of all concepts
 - formal specification of antecedence $\varphi(x)$ and consequence f(x)
 - revision
 - if challenged: no problem / don't take it personally
 - improved or new theory (version) → online databases
- changing incentives
 - publication guidelines for theories
 - possibility to publish theory specification papers (e.g., in JDM)
- aim for my presidency #2: foster theory specification and theory revision culture

Challenge III: Consolidation of Empirical Findings

- convergence = shared understanding of findings
 - many lab replications
 - adversarial approaches
 - critical replication to assure stability of findings
 - DE-gap reversal (Glöckner et al., 2016, JEP:G); replicated by Kellen, Pachur & Hertwig (2016, Cog)
 - open data → allows tests for other theories
- constructive debates at conferences
- cumulative science
 - databases for empirical data → continuous meta-analyses (http://curatescience.org/)

curatescience.org

curatescience.org

curatescience.org

Challenge III: Consolidation of Empirical Findings

 aim for my presidency #3: foster shared understanding of findings and collaborations between groups with opposing theoretical views

My first SPUDM: Stockholm 2005

- What did I believe in back than?
 - coherence-based models are right and can explain the world
 - fast-and-frugal heuristics are wrong
 - better not specify your own model too precisely, it could be falsified
 - my findings can be replicated
 - **■** long hair is the thing ...
- Learned anything? What do I believe in today?
 - short hair is good too
 - precisely specify my theory, to learn where it is wrong and improve it
 - I have to check whether my findings are reproducible [or others]

(A) Methodological Challenges

- ① Reproducibility
- ② Theory Specification and Prediction
- ③ Consolidation of Empirical Findings
- (B) Theoretical Developments

My first SPUDM: Stockholm 2005

- What did I believe in back than?
 - coherence-based models are right and can explain the world
 - fast-and-frugal heuristics are wrong
 - better not specify your own model too precisely, it could be falsified
 - my findings can be replicated
 - long hair is the thing ...
- Learned anything? What do I believe in today?
 - short hair is good too
 - precisely specify my theory, to learn where it is wrong and improve it
 - I have to check whether my findings are reproducible [or others]
 - all theories are wrong
 - coherence-based theories promising general process models [among others]

Why do I (still) believe in coherence-based models?

- theoretically plausible
 - integrate core ideas from cognitive psychology, social psychology and J/DM
 - important people said so
- empirical findings
 - supported in many different research paradigms
 - successful in predicting many behavioral variables
 - high empirical content
 - evidence becomes stronger with better methods
- [although it is a pain to present such complex models]

Coherence-based Models

- John Maule presidential address (SPUDM, 2005)
 - mental representation of a decision task: presented ≠ perceived
- associative coherence core mechanism of intuitive judgment (Morewedge & Kahneman, 2011, TiCS, p435)
 - "A stimulus evokes a coherent and self-reinforcing pattern of reciprocal activation in associative memory"
 - can explain confirmation bias, egocentric bias, anchoring, framing...
- accentuation and dominance structuring processes in judgment and choice (Svenson, 1992, ActaPsy) / (Montgomery, 1989)
- BUT: construction of detailed models of cognitive processes (Gigerenzer, 1993, PsyRev)

Coherence-based Decision Making

the process

maximizing coherence operational process of decision making (Thagard & Millgram, 1995; D. Simon, Snow & Read, 2004; cf. Koffka, 1936; Festinger, 1967; Montgomery, 1989; Pennington & Hastie, 1992)

the principle

automatic weighing of alternative interpretations of the evidence

- → accentuation of the most likely interpretation
- = mental representation

Excellent idea, but ...

how to formally specify a theory from that?

Paul Thagard Stephen Read

Dan Simon

Keith Holyoak

Will there be a control?						
	yes	no				
Cue 1 (high frequency 60%)	+	-				
Cue 2 (no boat on radar)	-	+				
Cue n (sunday)	-	+				

The Parallel Constraint Satisfaction Model for Decision Making (PCS-DM)

The Parallel Constraint Satisfaction Model for Decision Making (PCS-DM) (Glöckner & Betsch, 2008, JDM; Glöckner, Hilbig, & Jekel, 2014, Cog)

Parallel Constraint Satisfaction - Mechanism (McClelland & Rumelhart, 1981; 1986):

$$a_{i}(t+1) = a_{i}(t) * (1 - decay) + \begin{cases} if & input_{i} < 0 & input_{i} * (a_{i}(t) - floor) \\ if & input_{i} \ge 0 & input_{i} * (ceiling - a_{i}(t)) \end{cases}$$
$$input_{i}(t) = \sum_{i=1}^{n} w_{ij} * a_{j}(t)$$

coherent / good interpretation

PCS-DM Modelling

https://coherence.shinyapps.io/PCSDM/

Capacity Hypothesis

- quick weighted compensatory information integration
 - probabilistic inferences

 (e.g., Glöckner & Betsch, 2008, JEP:LMC;
 Glöckner, Hilbig & Jekel, 2014, Cog)
 - other choice paradigms
 - risky choices
 (e.g., Glöckner & Betsch, 2008, OBHDP;
 Glöckner & Pachur, 2012, Cog;
 Glöckner et al., 2016, JEP:G)
 - recognition-based inferences

 (e.g., Glöckner & Bröder, 2011, 2014, JDM;
 Heck & Erdfelder, 2017, PsyRev)
- high capacity for information integration

	Option A	Option B
Cue 1 (90% correct)	+	-
Cue 2 (60% correct)	-	+
Cue 3 (70% correct)	-	+
Cue 4 (75% correct)	-	+
Cue 5 (65% correct)	-	+
Cue 6 (55% correct)	-	+

weighted comp: 79%

MD(RT) = 3.71 sec

(vs. TTB, EQW, RAND)

Construction Hypothesis

 changes of cue evaluations in the decision process = coherence effect (Glöckner et al., 2010, JBDM)

Further Findings

- coherence drives
 - decision time and confidence
 (e.g., Glöckner & Betsch, 2012, AP; Glöckner, Hilbig & Jekel, 2014, Cog)
 - attention and information search [TALK: Glöckner, Tue, 9:00 (Ses#5)]
 (e.g., Glöckner & Herbold, 2011, JBDM)
 - arousal (Hochman, Ayal, & Glöckner, 2010, JDM)
- better quantitative predictions of behavior than competing formalized models (e.g., Glöckner, Hilbig & Jekel, 2014, Cog)
- spreading activation effects: no ignorance of information (e.g., Heck & Erdfelder, 2017, PsyRev)
- → evidence supports coherence-based theories
 - Parallel Constraint Satisfaction model (PCS-DM) formalized process model

Developments and Perspectives

- further model specification for search
 - integrated COherence based model for DEcision making and Search (iCODES; Jekel, Glöckner & Bröder, under review)
 - attraction-search effect [2 x TALKS: Wed, 11:00: Jekel, Scharf, Ses#9]
- to do's
 - specification as formal model to predict biases = overarching process theory
 - further critically testing / model comparisons
- consider specifying coherence-based theory
- consider testing against coherence-based theory
 - it is wrong [as all other theories]
 - and I am keen to learn in which respect to be able to improve it

[you find our data and materials at OpenScienceFramework: osf.io/g2qup]